A=( 2x+1/x căn x -1 – 1/ căn x-1 ): ( 1- x-2/ x + căn x+1 ) a, rút gọn A b, Tính A biết x = (2- căn 3) / 2 c tìm x thuộc z để A thuộc Z

A=( 2x+1/x căn x -1 – 1/ căn x-1 ): ( 1- x-2/ x + căn x+1 )
a, rút gọn A
b, Tính A biết x = (2- căn 3) / 2
c tìm x thuộc z để A thuộc Z

0 bình luận về “A=( 2x+1/x căn x -1 – 1/ căn x-1 ): ( 1- x-2/ x + căn x+1 ) a, rút gọn A b, Tính A biết x = (2- căn 3) / 2 c tìm x thuộc z để A thuộc Z”

  1. Đáp án:

    $\begin{array}{l}
    a)Dkxd:x \ge 0;x\# 1\\
    A = \left( {\dfrac{{2x + 1}}{{x\sqrt x  – 1}} – \dfrac{1}{{\sqrt x  – 1}}} \right):\left( {1 – \dfrac{{x – 2}}{{x + \sqrt x  + 1}}} \right)\\
     = \left( {\dfrac{{2x + 1}}{{\left( {\sqrt x  – 1} \right)\left( {x + \sqrt x  + 1} \right)}} – \dfrac{1}{{\sqrt x  – 1}}} \right):\dfrac{{x + \sqrt x  + 1 – x + 2}}{{x + \sqrt x  + 1}}\\
     = \dfrac{{2x + 1 – \left( {x + \sqrt x  + 1} \right)}}{{\left( {\sqrt x  – 1} \right)\left( {x + \sqrt x  + 1} \right)}}.\dfrac{{x + \sqrt x  + 1}}{{\sqrt x  + 3}}\\
     = \dfrac{{x – \sqrt x }}{{\sqrt x  – 1}}.\dfrac{1}{{\sqrt x  + 3}}\\
     = \dfrac{{\sqrt x \left( {\sqrt x  – 1} \right)}}{{\left( {\sqrt x  – 1} \right)\left( {\sqrt x  + 3} \right)}}\\
     = \dfrac{{\sqrt x }}{{\sqrt x  + 3}}\\
    b)x = \dfrac{{2 – \sqrt 3 }}{2}\left( {tmdk} \right)\\
     = \dfrac{{4 – 2\sqrt 3 }}{4}\\
     = {\left( {\dfrac{{\sqrt 3  – 1}}{2}} \right)^2}\\
     \Leftrightarrow \sqrt x  = \dfrac{{\sqrt 3  – 1}}{2}\\
     \Leftrightarrow A = \dfrac{{\sqrt x }}{{\sqrt x  + 3}} = \dfrac{{\dfrac{{\sqrt 3  – 1}}{2}}}{{\dfrac{{\sqrt 3  – 1}}{2} + 3}}\\
     = \dfrac{{\sqrt 3  – 1}}{{\sqrt 3  – 1 + 6}}\\
     = \dfrac{{\left( {\sqrt 3  – 1} \right)\left( {5 – \sqrt 3 } \right)}}{{\left( {\sqrt 3  + 5} \right)\left( {5 – \sqrt 3 } \right)}}\\
     = \dfrac{{6\sqrt 3  – 14}}{{25 – 3}}\\
     = \dfrac{{3\sqrt 3  – 7}}{{11}}\\
    c)A = \dfrac{{\sqrt x }}{{\sqrt x  + 3}} = \dfrac{{\sqrt x  + 3 – 3}}{{\sqrt x  + 3}}\\
     = 1 – \dfrac{3}{{\sqrt x  + 3}}\\
    A \in Z\\
     \Leftrightarrow \dfrac{3}{{\sqrt x  + 3}} \in Z\\
     \Leftrightarrow \sqrt x  + 3 = 3\left( {do:\sqrt x  + 3 \ge 3} \right)\\
     \Leftrightarrow \sqrt x  = 0\\
     \Leftrightarrow x = 0\left( {tmdk} \right)\\
    Vậy\,x = 0
    \end{array}$

    Bình luận

Viết một bình luận