Bài 1: 1/1-a + 2a/a2 -1 Chú thích: dấu gạch là dấu gạch phân số còn a2 là a mũ 2 Bài 2: a-2b/ab-b2 + b/a2-ab 28/07/2021 Bởi Sarah Bài 1: 1/1-a + 2a/a2 -1 Chú thích: dấu gạch là dấu gạch phân số còn a2 là a mũ 2 Bài 2: a-2b/ab-b2 + b/a2-ab
$\begin{array}{l}1)\,\,\,\,\dfrac{1}{{1 – a}} + \dfrac{{2a}}{{{a^2} – 1}}\\ = \dfrac{1}{{1 – a}} – \dfrac{{2a}}{{1 – {a^2}}} = \dfrac{{1 + a – 2a}}{{\left( {1 – a} \right)\left( {1 + a} \right)}}\\ = \dfrac{{1 – a}}{{\left( {1 – a} \right)\left( {1 + a} \right)}} = \dfrac{1}{{1 + a}}\\2)\,\,\dfrac{{a – 2b}}{{ab – {b^2}}} + \dfrac{b}{{{a^2} – ab}}\\ = \dfrac{{a – 2b}}{{b\left( {a – b} \right)}} + \dfrac{b}{{a\left( {a – b} \right)}} = \dfrac{{a\left( {a – 2b} \right) + b.b}}{{ab\left( {a – b} \right)}}\\ = \dfrac{{{a^2} – 2ab + {b^2}}}{{ab\left( {a – b} \right)}} = \dfrac{{{{\left( {a – b} \right)}^2}}}{{ab\left( {a – b} \right)}} = \dfrac{{a – b}}{{ab}}\end{array}$ Bình luận
$\begin{array}{l}
1)\,\,\,\,\dfrac{1}{{1 – a}} + \dfrac{{2a}}{{{a^2} – 1}}\\
= \dfrac{1}{{1 – a}} – \dfrac{{2a}}{{1 – {a^2}}} = \dfrac{{1 + a – 2a}}{{\left( {1 – a} \right)\left( {1 + a} \right)}}\\
= \dfrac{{1 – a}}{{\left( {1 – a} \right)\left( {1 + a} \right)}} = \dfrac{1}{{1 + a}}\\
2)\,\,\dfrac{{a – 2b}}{{ab – {b^2}}} + \dfrac{b}{{{a^2} – ab}}\\
= \dfrac{{a – 2b}}{{b\left( {a – b} \right)}} + \dfrac{b}{{a\left( {a – b} \right)}} = \dfrac{{a\left( {a – 2b} \right) + b.b}}{{ab\left( {a – b} \right)}}\\
= \dfrac{{{a^2} – 2ab + {b^2}}}{{ab\left( {a – b} \right)}} = \dfrac{{{{\left( {a – b} \right)}^2}}}{{ab\left( {a – b} \right)}} = \dfrac{{a – b}}{{ab}}
\end{array}$