Bài 16: Chứng tỏ
1) (a – b + c) – (a + c) = -b
2) (a + b) – (b – a) + c = 2a + c
3) – (a + b – c) + (a – b – c) = -2b
4) a(b + c) – a(b + d) = a(c – d)
5) a(b – c) + a(d + c) = a(b + d)
Bài 16: Chứng tỏ
1) (a – b + c) – (a + c) = -b
2) (a + b) – (b – a) + c = 2a + c
3) – (a + b – c) + (a – b – c) = -2b
4) a(b + c) – a(b + d) = a(c – d)
5) a(b – c) + a(d + c) = a(b + d)
1) (a – b + c) – (a + c) = -b
Xét VT: (a – b + c) – (a + c) = a-b+c -a -c = (a-a) + (c-c) -b
= 0 + 0 -b = -b = VP
⇒ ĐPCM
2) (a + b) – (b – a) + c = 2a + c
Xét VT: (a + b) – (b – a) + c = a +b -b +a +c
= (a +a) + (b-b) +c
= 2a + 0 +c
= 2a +c = VP
⇒ ĐPCM
3) – (a + b – c) + (a – b – c) = -2b
Xét VT: – (a + b – c) + (a – b – c) = -a -b +c +a -b -c
= (-a +a) + (-b -b) + (c-c)
= 0 + (-2b) + 0
= -2b = VP
⇒ ĐPCM
4) a(b + c) – a(b + d) = a(c – d)
Xét VT: a(b + c) – a(b + d) = ab +ac -ab +ad
= (ab -ab) + (ac -ad)
= 0 + a.(c-d) = a.(c-d) = VP
⇒ ĐPCM
5) a(b – c) + a(d + c) = a(b + d)
Xét VT: a(b – c) + a(d + c) = ab -ac +ad +ac
= (-ac +ac) + (ab +ad)
= 0 + a.(b+d)
= a.(b+d) = VP
⇒ ĐPCM
Chú ý: VT: vế trái
VP: vế phải
1) (a – b + c) – (a + c)
=a-b+c-a-c
=(a-a)+(c-c)-b
=-b
⇒(a – b + c) – (a + c) = -b
2) (a + b) – (b – a) + c
=a+b-b+a+c
=(a+a)+(b-b)+c
=2a+c
⇒ (a + b) – (b – a) + c = 2a + c
3) – (a + b – c) + (a – b – c)
=-a-b+c+a-b-c
=(-a+a)-(b+b)+(c-c)
=-2b
⇒- (a + b – c) + (a – b – c) = -2b
4) a(b + c) – a(b + d)
=ab+ac-ab-ad
=(ab-ab)+(ac-ad)
=a(c-d)
⇒a(b + c) – a(b + d) = a(c – d)
5) a(b – c) + a(d + c)
=ab-ac+ad+ac
=(ab+ad)+(ac-ac)
=a(b+d)
⇒a(b – c) + a(d + c) = a(b + d)