Cho pt x^2 -2x + m -3=0. Tìm m để pt có 2 nghiệm x1;x2 thỏa mãn x1^2 + 3.×2^2 =4x1x2 18/07/2021 Bởi Faith Cho pt x^2 -2x + m -3=0. Tìm m để pt có 2 nghiệm x1;x2 thỏa mãn x1^2 + 3.×2^2 =4x1x2
Đáp án: \(m = \dfrac{{15 + \sqrt {33} }}{8}\) Giải thích các bước giải: Để phương trình có 2 nghiệm \(\begin{array}{l} \to \Delta ‘ \ge 0\\ \to 1 – m + 3 \ge 0\\ \to 4 \ge m\\ \to \left[ \begin{array}{l}x = 1 + \sqrt {4 – m} \\x = 1 – \sqrt {4 – m} \end{array} \right.\\Vi – et:\left\{ \begin{array}{l}{x_1} + {x_2} = 2\\{x_1}{x_2} = m – 3\end{array} \right.\\{x_1}^2 + 3{x_2}^2 = 4{x_1}{x_2}\\ \to {x_1}^2 + {x_2}^2 + 2{x_2}^2 = 4{x_1}{x_2}\\ \to \left( {{x_1}^2 + {x_2}^2 + 2{x_1}{x_2}} \right) + 2{x_2}^2 = 6{x_1}{x_2}\\ \to {\left( {{x_1} + {x_2}} \right)^2} + 2{x_2}^2 = 6{x_1}{x_2}\\ \to \left[ \begin{array}{l}4 + 2.{\left( {1 + \sqrt {4 – m} } \right)^2} = 6\left( {m – 3} \right)\\4 + 2.{\left( {1 – \sqrt {4 – m} } \right)^2} = 6\left( {m – 3} \right)\end{array} \right.\\ \to \left[ \begin{array}{l}4 + 2\left( {1 + 2\sqrt {4 – m} + 4 – m} \right) = 6m – 18\\4 + 2\left( {1 – 2\sqrt {4 – m} + 4 – m} \right) = 6m – 18\end{array} \right.\\ \to \left[ \begin{array}{l}14 – 2m + 4\sqrt {4 – m} = 6m – 18\\14 – 2m – 4\sqrt {4 – m} = 6m – 18\end{array} \right.\\ \to \left[ \begin{array}{l}4\sqrt {4 – m} = 8m – 32\\4\sqrt {4 – m} = – 8m + 32\end{array} \right.\\ \to \sqrt {4 – m} = 2m – 4\\ \to 4 – m = 4{m^2} – 16m + 16\left( {DK:4 \ge m \ge 2} \right)\\ \to 4{m^2} – 15m + 12 = 0\\ \to \left[ \begin{array}{l}m = \dfrac{{15 + \sqrt {33} }}{8}\left( {TM} \right)\\m = \dfrac{{15 – \sqrt {33} }}{8}\left( l \right)\end{array} \right.\end{array}\) Bình luận
Đáp án:
\(m = \dfrac{{15 + \sqrt {33} }}{8}\)
Giải thích các bước giải:
Để phương trình có 2 nghiệm
\(\begin{array}{l}
\to \Delta ‘ \ge 0\\
\to 1 – m + 3 \ge 0\\
\to 4 \ge m\\
\to \left[ \begin{array}{l}
x = 1 + \sqrt {4 – m} \\
x = 1 – \sqrt {4 – m}
\end{array} \right.\\
Vi – et:\left\{ \begin{array}{l}
{x_1} + {x_2} = 2\\
{x_1}{x_2} = m – 3
\end{array} \right.\\
{x_1}^2 + 3{x_2}^2 = 4{x_1}{x_2}\\
\to {x_1}^2 + {x_2}^2 + 2{x_2}^2 = 4{x_1}{x_2}\\
\to \left( {{x_1}^2 + {x_2}^2 + 2{x_1}{x_2}} \right) + 2{x_2}^2 = 6{x_1}{x_2}\\
\to {\left( {{x_1} + {x_2}} \right)^2} + 2{x_2}^2 = 6{x_1}{x_2}\\
\to \left[ \begin{array}{l}
4 + 2.{\left( {1 + \sqrt {4 – m} } \right)^2} = 6\left( {m – 3} \right)\\
4 + 2.{\left( {1 – \sqrt {4 – m} } \right)^2} = 6\left( {m – 3} \right)
\end{array} \right.\\
\to \left[ \begin{array}{l}
4 + 2\left( {1 + 2\sqrt {4 – m} + 4 – m} \right) = 6m – 18\\
4 + 2\left( {1 – 2\sqrt {4 – m} + 4 – m} \right) = 6m – 18
\end{array} \right.\\
\to \left[ \begin{array}{l}
14 – 2m + 4\sqrt {4 – m} = 6m – 18\\
14 – 2m – 4\sqrt {4 – m} = 6m – 18
\end{array} \right.\\
\to \left[ \begin{array}{l}
4\sqrt {4 – m} = 8m – 32\\
4\sqrt {4 – m} = – 8m + 32
\end{array} \right.\\
\to \sqrt {4 – m} = 2m – 4\\
\to 4 – m = 4{m^2} – 16m + 16\left( {DK:4 \ge m \ge 2} \right)\\
\to 4{m^2} – 15m + 12 = 0\\
\to \left[ \begin{array}{l}
m = \dfrac{{15 + \sqrt {33} }}{8}\left( {TM} \right)\\
m = \dfrac{{15 – \sqrt {33} }}{8}\left( l \right)
\end{array} \right.
\end{array}\)