cho pt x^2-(m-1)x-m^2+m-2=0. Tìm m để pt có 2 nghiệm x1,x2sao cho x1^2-x2^2=3

cho pt x^2-(m-1)x-m^2+m-2=0. Tìm m để pt có 2 nghiệm x1,x2sao cho x1^2-x2^2=3

0 bình luận về “cho pt x^2-(m-1)x-m^2+m-2=0. Tìm m để pt có 2 nghiệm x1,x2sao cho x1^2-x2^2=3”

  1. Đáp án: $m = 1,79$

     

    Giải thích các bước giải:

    $\begin{array}{l}
    {x^2} – \left( {m – 1} \right).x – {m^2} + m – 2 = 0\\
    \Delta  = {\left( {m – 1} \right)^2} – 4\left( { – {m^2} + m – 2} \right)\\
     = {m^2} – 2m + 1 + 4{m^2} – 4m + 8\\
     = 5{m^2} – 6m + 9 > 0
    \end{array}$

    Vậy pt luôn có 2 nghiệm phân biệt với mọi x

    $\begin{array}{l}
    Theo\,Viet:\left\{ \begin{array}{l}
    {x_1} + {x_2} = m – 1\\
    {x_1}{x_2} =  – {m^2} + m – 2
    \end{array} \right.\\
    x_1^2 – x_2^2 = 3\\
     \Leftrightarrow \left( {{x_1} + {x_2}} \right)\left( {{x_1} – {x_2}} \right) = 3\\
     \Leftrightarrow \left( {m – 1} \right).\sqrt {{{\left( {{x_1} – {x_2}} \right)}^2}}  = 3\\
     \Leftrightarrow \left( {m – 1} \right).\sqrt {{{\left( {{x_1} + {x_2}} \right)}^2} – 4{x_1}{x_2}}  = 3\\
     \Leftrightarrow \left( {m – 1} \right).\sqrt {{{\left( {m – 1} \right)}^2} – 4\left( { – {m^2} + m – 2} \right)}  = 3\\
     \Leftrightarrow \left( {m – 1} \right).\sqrt {5{m^2} – 6m + 9}  = 3\left( {dk:m > 1} \right)\\
     \Leftrightarrow {\left( {m – 1} \right)^2}.\left( {5{m^2} – 6m + 9} \right) = 9\\
     \Leftrightarrow \left( {{m^2} – 2m + 1} \right)\left( {5{m^2} – 6m + 9} \right) – 9 = 0\\
     \Leftrightarrow 5{m^4} – 6{m^3} + 9{m^2} – 10{m^3} + 12{m^2} – 18m + 5{m^2} – 6m = 0\\
     \Leftrightarrow 5{m^4} – 16{m^3} + 26{m^2} – 24m = 0\\
     \Leftrightarrow m\left( {5{m^3} – 16{m^2} + 26m – 24} \right) = 0\\
     \Leftrightarrow \left[ \begin{array}{l}
    m = 0\left( {ktm} \right)\\
    m = 1,79\left( {\left( {tm} \right)} \right)
    \end{array} \right.\\
    Vậy\,m = 1,79
    \end{array}$

    Bình luận

Viết một bình luận