Xét dấu biểu thức tiếp ạ B.f(x)=(2x+3)(x-4)(x+2) C. f(x)= __x+6___ (2x-1)(x+2) Giúp mk vs ạ 18/11/2021 Bởi Everleigh Xét dấu biểu thức tiếp ạ B.f(x)=(2x+3)(x-4)(x+2) C. f(x)= __x+6___ (2x-1)(x+2) Giúp mk vs ạ
Đáp án: a. \(\begin{array}{l}f\left( x \right) > 0 \Leftrightarrow x \in \left( { – 2; – \frac{3}{2}} \right) \cup \left( {4; + \infty } \right)\\f\left( x \right) < 0 \Leftrightarrow x \in \left( { – \infty ; – 2} \right) \cup \left( { – \frac{3}{2};4} \right)\end{array}\) Giải thích các bước giải: a. Xét: \(\left[ \begin{array}{l}2x + 3 = 0\\x – 4 = 0\\x + 2 = 0\end{array} \right. \to \left[ \begin{array}{l}x = – \frac{3}{2}\\x = 4\\x = – 2\end{array} \right.\) BXD: x -∞ -2 -3/2 4 +∞ f(x) – 0 + 0 – 0 + \(\begin{array}{l}KL:f\left( x \right) > 0 \Leftrightarrow x \in \left( { – 2; – \frac{3}{2}} \right) \cup \left( {4; + \infty } \right)\\f\left( x \right) < 0 \Leftrightarrow x \in \left( { – \infty ; – 2} \right) \cup \left( { – \frac{3}{2};4} \right)\end{array}\) \(b.DK:x \ne \left\{ { – 2;\frac{1}{2}} \right\}\) BXD: x -∞ -6 -2 1/2 +∞ f(x) – 0 + 0 – 0 + \(KL:f\left( x \right) > 0 \Leftrightarrow x \in \left( { – 6; – 2} \right) \cup \left( {\frac{1}{2}; + \infty } \right)\) Bình luận
Đáp án:
a. \(\begin{array}{l}
f\left( x \right) > 0 \Leftrightarrow x \in \left( { – 2; – \frac{3}{2}} \right) \cup \left( {4; + \infty } \right)\\
f\left( x \right) < 0 \Leftrightarrow x \in \left( { – \infty ; – 2} \right) \cup \left( { – \frac{3}{2};4} \right)
\end{array}\)
Giải thích các bước giải:
a. Xét:
\(\left[ \begin{array}{l}
2x + 3 = 0\\
x – 4 = 0\\
x + 2 = 0
\end{array} \right. \to \left[ \begin{array}{l}
x = – \frac{3}{2}\\
x = 4\\
x = – 2
\end{array} \right.\)
BXD:
x -∞ -2 -3/2 4 +∞
f(x) – 0 + 0 – 0 +
\(\begin{array}{l}
KL:f\left( x \right) > 0 \Leftrightarrow x \in \left( { – 2; – \frac{3}{2}} \right) \cup \left( {4; + \infty } \right)\\
f\left( x \right) < 0 \Leftrightarrow x \in \left( { – \infty ; – 2} \right) \cup \left( { – \frac{3}{2};4} \right)
\end{array}\)
\(b.DK:x \ne \left\{ { – 2;\frac{1}{2}} \right\}\)
BXD:
x -∞ -6 -2 1/2 +∞
f(x) – 0 + 0 – 0 +
\(KL:f\left( x \right) > 0 \Leftrightarrow x \in \left( { – 6; – 2} \right) \cup \left( {\frac{1}{2}; + \infty } \right)\)