Giải hệ phương trình bằng phương pháp cộng đại số a) {-x+3y=2 3x-4y=-1} b) {2x+y=3 3-x=y} 19/10/2021 Bởi Alexandra Giải hệ phương trình bằng phương pháp cộng đại số a) {-x+3y=2 3x-4y=-1} b) {2x+y=3 3-x=y}
\(\left[ \begin{array}{l}-x+3y=2\\3x-4y=-1\end{array} \right.\) ⇔\(\left[ \begin{array}{l}-3x+9y=6\\3x-4y=-1\end{array} \right.\) `⇔-3x+9y+3x-4y=6+-1` `⇔5y=5` `⇔y=1` `⇒3x-4=-1` `⇒3x=3` `⇒x=1` \(\left[ \begin{array}{l}2x+y=3\\3-x=y\end{array} \right.\) ⇔\(\left[ \begin{array}{l}2x+y=3\\x+y=3\end{array} \right.\) `⇒2x+y-x-y=3-3` `⇒x=0` `⇒0+y=3` `⇒y=3` Bình luận
a, $\left \{ {{-x+3y=2} \atop {3x-4y=-1}} \right.⇔$ $\left \{ {{-3x+9y=6} \atop {3x-4y=-1}} \right.$ $⇔\left \{ {{5y=5} \atop {-x+3y=2}} \right.⇔$ $\left \{ {{y=1} \atop {-x+3=2}} \right.⇔$ $\left \{ {{y=1} \atop {x=1}} \right.$ Vậy ………………………. b, $\left \{ {{2x+y=3} \atop {3-x=y}} \right.⇔$$\left \{ {{2x+y=3} \atop {x+y=3}} \right.⇔$$\left \{ {{x=0} \atop {y=3-x=3-0=3}} \right.$ Vậy ……………………….. Bình luận
\(\left[ \begin{array}{l}-x+3y=2\\3x-4y=-1\end{array} \right.\)
⇔\(\left[ \begin{array}{l}-3x+9y=6\\3x-4y=-1\end{array} \right.\)
`⇔-3x+9y+3x-4y=6+-1`
`⇔5y=5`
`⇔y=1`
`⇒3x-4=-1`
`⇒3x=3`
`⇒x=1`
\(\left[ \begin{array}{l}2x+y=3\\3-x=y\end{array} \right.\)
⇔\(\left[ \begin{array}{l}2x+y=3\\x+y=3\end{array} \right.\)
`⇒2x+y-x-y=3-3`
`⇒x=0`
`⇒0+y=3`
`⇒y=3`
a, $\left \{ {{-x+3y=2} \atop {3x-4y=-1}} \right.⇔$ $\left \{ {{-3x+9y=6} \atop {3x-4y=-1}} \right.$
$⇔\left \{ {{5y=5} \atop {-x+3y=2}} \right.⇔$ $\left \{ {{y=1} \atop {-x+3=2}} \right.⇔$ $\left \{ {{y=1} \atop {x=1}} \right.$
Vậy ……………………….
b, $\left \{ {{2x+y=3} \atop {3-x=y}} \right.⇔$$\left \{ {{2x+y=3} \atop {x+y=3}} \right.⇔$$\left \{ {{x=0} \atop {y=3-x=3-0=3}} \right.$
Vậy ………………………..