Giải phương trình sau: (phương trình đối xứng loại 2)
$\left \{ {{2x+ \frac{1}{y} = \frac{3}{x}} \atop {2y+ \frac{1}{x} = \frac{3}{y} }} \right.$
Giải phương trình sau: (phương trình đối xứng loại 2)
$\left \{ {{2x+ \frac{1}{y} = \frac{3}{x}} \atop {2y+ \frac{1}{x} = \frac{3}{y} }} \right.$
Đáp án:
$\begin{array}{l}
\left\{ \begin{array}{l}
2x + \frac{1}{y} = \frac{3}{x}\\
2y + \frac{1}{x} = \frac{3}{y}
\end{array} \right.\left( {x,y \ne 0} \right)\\
\Rightarrow 2x + \frac{1}{y} – 2y – \frac{1}{x} = \frac{3}{x} – \frac{3}{y}\\
\Rightarrow 2\left( {x – y} \right) + \left( {\frac{1}{y} – \frac{1}{x}} \right) = 3\left( {\frac{1}{x} – \frac{1}{y}} \right)\\
\Rightarrow 2\left( {x – y} \right) – \frac{{x – y}}{{xy}} + 3.\frac{{x – y}}{{xy}} = 0\\
\Rightarrow \left( {x – y} \right)\left( {2 – \frac{1}{{xy}} + \frac{3}{{xy}}} \right) = 0\\
\Rightarrow \left[ \begin{array}{l}
x = y\\
2 + \frac{2}{{xy}} = 0
\end{array} \right.\\
\Rightarrow \left[ \begin{array}{l}
x = y\left( 1 \right)\\
xy = – 1 \Rightarrow – x = \frac{1}{y}\left( 2 \right)
\end{array} \right.\\
\left( 1 \right) \Rightarrow 2x + \frac{1}{x} = \frac{3}{x} \Rightarrow 2x – \frac{2}{x} = 0 \Rightarrow x = y = \pm 1\\
\left( 2 \right) \Rightarrow 2x – x = \frac{3}{x} \Rightarrow x = \frac{3}{x} \Rightarrow x = \pm \sqrt 3 \Rightarrow y = \frac{{ \mp 1}}{{\sqrt 3 }}
\end{array}$