Làm hộ em bài này vs ạ :
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy AB=10cm, cạnh bên SA=12cm.
A/ tính đường chéo AC
B/ Tính đường cao SO rồi tính thể tích của hình chóp
Làm hộ em bài này vs ạ :
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy AB=10cm, cạnh bên SA=12cm.
A/ tính đường chéo AC
B/ Tính đường cao SO rồi tính thể tích của hình chóp
a, Theo định lí Py ta go trong tam giác vuông ABC ta có
AC² = AB² + BC² = 10²+10²= 200
⇒ AC = 10√2 (cm)
b, AO = AC/ 2 = 10√2/ 2 = 5√2 (cm)
Trong tam giác vuông SAO có
SO = √SA² – AO² = √12² – (5√2)² ≈9,7 (cm)
Thể tích hình chóp
V= 1/3 S ABCD . SO = 1/3 . 10. 9,7 ≈ 323,33 (cm)³
a)
ΔADC⊥D ⇒ $AC^{2}$ =$AD^{2}$+ $DC^{2}$
⇒$AC^{2}$ = $10^{2}$ + $10^{2}$
⇒ AC= 10$\sqrt[]{2}$
b)
AO = AC/ 2 = 10√2/ 2 = 5√2 (cm)
Trong tam giác vuông SAO có
SO = √SA² – AO² = √12² – (5√2)² ≈9,7 (cm)
Thể tích hình chóp
V= 1/3 S ABCD . SO = 1/3 . 10. 9,7 ≈ 323,33 (cm)³