$\left \{ {{x^2+2y^2-3xy-2x+4y=0} \atop {(x^2-5)^2=2x-2y+5}} \right.$ 17/07/2021 Bởi Gabriella $\left \{ {{x^2+2y^2-3xy-2x+4y=0} \atop {(x^2-5)^2=2x-2y+5}} \right.$
Đáp án: $S = \left\{ \begin{array}{l}\left( {\dfrac{{1 + \sqrt {21} }}{2};\dfrac{{1 + \sqrt {21} }}{4}} \right);\left( {\dfrac{{1 – \sqrt {21} }}{2};\dfrac{{1 – \sqrt {21} }}{4}} \right);\left( {\dfrac{{ – 1 + \sqrt {17} }}{2};\dfrac{{ – 1 + \sqrt {17} }}{4}} \right);\left( {\dfrac{{ – 1 – \sqrt {17} }}{2};\dfrac{{ – 1 – \sqrt {17} }}{4}} \right);\\\left( {2\sqrt 2 ;2\sqrt 2 – 2} \right);\left( { – 2\sqrt 2 ; – 2\sqrt 2 – 2} \right);\left( {\sqrt 2 ;\sqrt 2 – 2} \right);\left( { – \sqrt 2 ; – \sqrt 2 – 2} \right)\end{array} \right\}$ Giải thích các bước giải: Ta có: $\begin{array}{l}\left\{ \begin{array}{l}{x^2} + 2{y^2} – 3xy – 2x + 4y = 0\\{\left( {{x^2} – 5} \right)^2} = 2x – 2y + 5\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}\left( {{x^2} – 3xy + 2{y^2}} \right) – 2\left( {x – 2y} \right) = 0\\{\left( {{x^2} – 5} \right)^2} = 2x – 2y + 5\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}\left( {x – 2y} \right)\left( {x – y – 2} \right) = 0\\{\left( {{x^2} – 5} \right)^2} = 2x – 2y + 5\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}x = 2y\\x – y = 2\end{array} \right.\\{\left( {{x^2} – 5} \right)^2} = 2x – 2y + 5\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x = 2y\\{\left( {{x^2} – 5} \right)^2} = 2x – 2y + 5\end{array} \right.\\\left\{ \begin{array}{l}x – y = 2\\{\left( {{x^2} – 5} \right)^2} = 2x – 2y + 5\end{array} \right.\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x = 2y\\{\left( {{x^2} – 5} \right)^2} = x + 5\end{array} \right.\\\left\{ \begin{array}{l}x – y = 2\\{\left( {{x^2} – 5} \right)^2} = 9\end{array} \right.\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x = 2y\\{x^4} – 10{x^2} – x + 20 = 0\end{array} \right.\\\left\{ \begin{array}{l}x – y = 2\\\left[ \begin{array}{l}{x^2} – 5 = 3\\{x^2} – 5 = – 3\end{array} \right.\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x = 2y\\\left( {{x^2} – x – 5} \right)\left( {{x^2} + x – 4} \right) = 0\end{array} \right.\\\left\{ \begin{array}{l}y = x – 2\\\left[ \begin{array}{l}x = \pm 2\sqrt 2 \\x = \pm \sqrt 2 \end{array} \right.\end{array} \right.\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}y = \dfrac{x}{2}\\\left[ \begin{array}{l}{x^2} – x – 5 = 0\\{x^2} + x – 4 = 0\end{array} \right.\end{array} \right.\\x = 2\sqrt 2 ;y = 2\sqrt 2 – 2\\x = – 2\sqrt 2 ;y = – 2\sqrt 2 – 2\\x = \sqrt 2 ;y = \sqrt 2 – 2\\x = – \sqrt 2 ;y = – \sqrt 2 – 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{{1 + \sqrt {21} }}{2};y = \dfrac{{1 + \sqrt {21} }}{4}\\x = \dfrac{{1 – \sqrt {21} }}{2};y = \dfrac{{1 – \sqrt {21} }}{4}\\x = \dfrac{{ – 1 + \sqrt {17} }}{2};y = \dfrac{{ – 1 + \sqrt {17} }}{4}\\x = \dfrac{{ – 1 – \sqrt {17} }}{2};y = \dfrac{{ – 1 – \sqrt {17} }}{4}\\x = 2\sqrt 2 ;y = 2\sqrt 2 – 2\\x = – 2\sqrt 2 ;y = – 2\sqrt 2 – 2\\x = \sqrt 2 ;y = \sqrt 2 – 2\\x = – \sqrt 2 ;y = – \sqrt 2 – 2\end{array} \right.\end{array}$ Vậy tập nghiệm của phương trình là: $S = \left\{ \begin{array}{l}\left( {\dfrac{{1 + \sqrt {21} }}{2};\dfrac{{1 + \sqrt {21} }}{4}} \right);\left( {\dfrac{{1 – \sqrt {21} }}{2};\dfrac{{1 – \sqrt {21} }}{4}} \right);\left( {\dfrac{{ – 1 + \sqrt {17} }}{2};\dfrac{{ – 1 + \sqrt {17} }}{4}} \right);\left( {\dfrac{{ – 1 – \sqrt {17} }}{2};\dfrac{{ – 1 – \sqrt {17} }}{4}} \right);\\\left( {2\sqrt 2 ;2\sqrt 2 – 2} \right);\left( { – 2\sqrt 2 ; – 2\sqrt 2 – 2} \right);\left( {\sqrt 2 ;\sqrt 2 – 2} \right);\left( { – \sqrt 2 ; – \sqrt 2 – 2} \right)\end{array} \right\}$ Bình luận
Đáp án:
$S = \left\{ \begin{array}{l}
\left( {\dfrac{{1 + \sqrt {21} }}{2};\dfrac{{1 + \sqrt {21} }}{4}} \right);\left( {\dfrac{{1 – \sqrt {21} }}{2};\dfrac{{1 – \sqrt {21} }}{4}} \right);\left( {\dfrac{{ – 1 + \sqrt {17} }}{2};\dfrac{{ – 1 + \sqrt {17} }}{4}} \right);\left( {\dfrac{{ – 1 – \sqrt {17} }}{2};\dfrac{{ – 1 – \sqrt {17} }}{4}} \right);\\
\left( {2\sqrt 2 ;2\sqrt 2 – 2} \right);\left( { – 2\sqrt 2 ; – 2\sqrt 2 – 2} \right);\left( {\sqrt 2 ;\sqrt 2 – 2} \right);\left( { – \sqrt 2 ; – \sqrt 2 – 2} \right)
\end{array} \right\}$
Giải thích các bước giải:
Ta có:
$\begin{array}{l}
\left\{ \begin{array}{l}
{x^2} + 2{y^2} – 3xy – 2x + 4y = 0\\
{\left( {{x^2} – 5} \right)^2} = 2x – 2y + 5
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
\left( {{x^2} – 3xy + 2{y^2}} \right) – 2\left( {x – 2y} \right) = 0\\
{\left( {{x^2} – 5} \right)^2} = 2x – 2y + 5
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
\left( {x – 2y} \right)\left( {x – y – 2} \right) = 0\\
{\left( {{x^2} – 5} \right)^2} = 2x – 2y + 5
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
\left[ \begin{array}{l}
x = 2y\\
x – y = 2
\end{array} \right.\\
{\left( {{x^2} – 5} \right)^2} = 2x – 2y + 5
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
x = 2y\\
{\left( {{x^2} – 5} \right)^2} = 2x – 2y + 5
\end{array} \right.\\
\left\{ \begin{array}{l}
x – y = 2\\
{\left( {{x^2} – 5} \right)^2} = 2x – 2y + 5
\end{array} \right.
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
x = 2y\\
{\left( {{x^2} – 5} \right)^2} = x + 5
\end{array} \right.\\
\left\{ \begin{array}{l}
x – y = 2\\
{\left( {{x^2} – 5} \right)^2} = 9
\end{array} \right.
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
x = 2y\\
{x^4} – 10{x^2} – x + 20 = 0
\end{array} \right.\\
\left\{ \begin{array}{l}
x – y = 2\\
\left[ \begin{array}{l}
{x^2} – 5 = 3\\
{x^2} – 5 = – 3
\end{array} \right.
\end{array} \right.
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
x = 2y\\
\left( {{x^2} – x – 5} \right)\left( {{x^2} + x – 4} \right) = 0
\end{array} \right.\\
\left\{ \begin{array}{l}
y = x – 2\\
\left[ \begin{array}{l}
x = \pm 2\sqrt 2 \\
x = \pm \sqrt 2
\end{array} \right.
\end{array} \right.
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
y = \dfrac{x}{2}\\
\left[ \begin{array}{l}
{x^2} – x – 5 = 0\\
{x^2} + x – 4 = 0
\end{array} \right.
\end{array} \right.\\
x = 2\sqrt 2 ;y = 2\sqrt 2 – 2\\
x = – 2\sqrt 2 ;y = – 2\sqrt 2 – 2\\
x = \sqrt 2 ;y = \sqrt 2 – 2\\
x = – \sqrt 2 ;y = – \sqrt 2 – 2
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = \dfrac{{1 + \sqrt {21} }}{2};y = \dfrac{{1 + \sqrt {21} }}{4}\\
x = \dfrac{{1 – \sqrt {21} }}{2};y = \dfrac{{1 – \sqrt {21} }}{4}\\
x = \dfrac{{ – 1 + \sqrt {17} }}{2};y = \dfrac{{ – 1 + \sqrt {17} }}{4}\\
x = \dfrac{{ – 1 – \sqrt {17} }}{2};y = \dfrac{{ – 1 – \sqrt {17} }}{4}\\
x = 2\sqrt 2 ;y = 2\sqrt 2 – 2\\
x = – 2\sqrt 2 ;y = – 2\sqrt 2 – 2\\
x = \sqrt 2 ;y = \sqrt 2 – 2\\
x = – \sqrt 2 ;y = – \sqrt 2 – 2
\end{array} \right.
\end{array}$
Vậy tập nghiệm của phương trình là:
$S = \left\{ \begin{array}{l}
\left( {\dfrac{{1 + \sqrt {21} }}{2};\dfrac{{1 + \sqrt {21} }}{4}} \right);\left( {\dfrac{{1 – \sqrt {21} }}{2};\dfrac{{1 – \sqrt {21} }}{4}} \right);\left( {\dfrac{{ – 1 + \sqrt {17} }}{2};\dfrac{{ – 1 + \sqrt {17} }}{4}} \right);\left( {\dfrac{{ – 1 – \sqrt {17} }}{2};\dfrac{{ – 1 – \sqrt {17} }}{4}} \right);\\
\left( {2\sqrt 2 ;2\sqrt 2 – 2} \right);\left( { – 2\sqrt 2 ; – 2\sqrt 2 – 2} \right);\left( {\sqrt 2 ;\sqrt 2 – 2} \right);\left( { – \sqrt 2 ; – \sqrt 2 – 2} \right)
\end{array} \right\}$