PTĐTTNT 1,$x^{4}$+2002 $x^{2}$ -2001x+2002 2,$x^{4}$+2005 $x^{2}$ -2004x+2005 làm đầy đủ mik vote 5 sao 11/09/2021 Bởi Natalia PTĐTTNT 1,$x^{4}$+2002 $x^{2}$ -2001x+2002 2,$x^{4}$+2005 $x^{2}$ -2004x+2005 làm đầy đủ mik vote 5 sao
Đáp án: 1) `(x² -x +1).(x² +x +2002)` 2) `(x² -x +1).(x² +x +2005)` Giải thích các bước giải: 1) `x^4 +2002x² -2001x +2002` `= x^4 +2002x² +x -2002x +2002` `= (x^4 +x) + (2002x² -2002x +2002)` `= x.(x³ +1) + 2002.(x² -x +1)` `= x.(x +1).(x² -x +1) +2002.(x² -x +1)` `= (x² -x +1).[x.(x +1) +2002]` `= (x² -x +1).(x² +x +2002)` 2) `x^4 +2005x² -2004x +2005` `= x^4 +2005x² +x -2005x +2005` `= (x^4 +x) + (2005x² -2005x +2005)` `= x.(x³ +1) + 2005.(x² -x +1)` `= x.(x +1).(x² -x +1) +2005.(x² -x +1)` `= (x² -x +1).[x.(x +1) +2005]` `= (x² -x +1).(x² +x +2005)` Bình luận
`1) x^4 + 2002x^2 – 2001x + 2002.` `=x^4 + 2002x^2 + x – 2002x + 2002` `= (x^4 + x ) + (2002x^2 – 2002x + 2002)` `= x(x^3+1) + 2002(x^2 – x + 1)` `= x(x+1)(x^2-x+1) + 2002(x^2 – x + 1)` `= (x^2-x+1)[x(x+1)+2002]` `= (x^2-x+1)(x^2+x+2002).` `2) x^4 + 2005x^2 – 2004x + 2005.` `=x^4 + 2005x^2 + x – 2005x + 2005` `= (x^4 + x ) + (2005x^2 – 2005x + 2005)` `= x(x^3+1) + 2005(x^2 – x + 1)` `= x(x+1)(x^2-x+1) + 2005(x^2 – x + 1)` `= (x^2-x+1)[x(x+1)+2005]` `= (x^2-x+1)(x^2+x+2005).` Bình luận
Đáp án:
1) `(x² -x +1).(x² +x +2002)`
2) `(x² -x +1).(x² +x +2005)`
Giải thích các bước giải:
1) `x^4 +2002x² -2001x +2002`
`= x^4 +2002x² +x -2002x +2002`
`= (x^4 +x) + (2002x² -2002x +2002)`
`= x.(x³ +1) + 2002.(x² -x +1)`
`= x.(x +1).(x² -x +1) +2002.(x² -x +1)`
`= (x² -x +1).[x.(x +1) +2002]`
`= (x² -x +1).(x² +x +2002)`
2) `x^4 +2005x² -2004x +2005`
`= x^4 +2005x² +x -2005x +2005`
`= (x^4 +x) + (2005x² -2005x +2005)`
`= x.(x³ +1) + 2005.(x² -x +1)`
`= x.(x +1).(x² -x +1) +2005.(x² -x +1)`
`= (x² -x +1).[x.(x +1) +2005]`
`= (x² -x +1).(x² +x +2005)`
`1) x^4 + 2002x^2 – 2001x + 2002.`
`=x^4 + 2002x^2 + x – 2002x + 2002`
`= (x^4 + x ) + (2002x^2 – 2002x + 2002)`
`= x(x^3+1) + 2002(x^2 – x + 1)`
`= x(x+1)(x^2-x+1) + 2002(x^2 – x + 1)`
`= (x^2-x+1)[x(x+1)+2002]`
`= (x^2-x+1)(x^2+x+2002).`
`2) x^4 + 2005x^2 – 2004x + 2005.`
`=x^4 + 2005x^2 + x – 2005x + 2005`
`= (x^4 + x ) + (2005x^2 – 2005x + 2005)`
`= x(x^3+1) + 2005(x^2 – x + 1)`
`= x(x+1)(x^2-x+1) + 2005(x^2 – x + 1)`
`= (x^2-x+1)[x(x+1)+2005]`
`= (x^2-x+1)(x^2+x+2005).`