Tìm `a,b \in NN` tm `\sqrt{a+\sqrt{2021}}+\sqrt{b-\sqrt{2021}}\in QQ` 05/07/2021 Bởi Isabelle Tìm `a,b \in NN` tm `\sqrt{a+\sqrt{2021}}+\sqrt{b-\sqrt{2021}}\in QQ`
Đáp án: `a=b=1011` Giải thích các bước giải: Đặt `A=\sqrt{a+\sqrt{2021}}+\sqrt{b-\sqrt{2021}}\in QQ` `=>A^2=a+sqrt2021+b-sqrt2021+2sqrt((a+2021)(b-sqrt(2021)))\in QQ“ `=>sqrt((a+2021)(b-sqrt(2021)))\inQQ(1)` `=>(a+sqrt2021)(b-sqrt2021)\inQQ` `=>ab-2021-sqrt2011(a-b)\inQQ` `=>sqrt2011(a-b)\inQQ` `=>a-b=0=>a=b` Từ `(1)` có `sqrt((a+2021)(b-sqrt(2021)))\inQQ` `=>sqrt(a^2-2021)\inQQ` Mà `a\inNN` nên `a^2-2021\inNN` `=>sqrt(a^2-2021)\inNN` `=>a^2-2021=p^2(p>=1)` `=>` `a^2-p^2=2021` `=>` `(a-p)(a+p)=2021` `=>{(a-p=1),(a+p=2021):}=>a=1011=>b=1011` Vậy `a=b=1011` Bình luận
Đáp án: `a=b=1011`
Giải thích các bước giải:
Đặt `A=\sqrt{a+\sqrt{2021}}+\sqrt{b-\sqrt{2021}}\in QQ`
`=>A^2=a+sqrt2021+b-sqrt2021+2sqrt((a+2021)(b-sqrt(2021)))\in QQ“
`=>sqrt((a+2021)(b-sqrt(2021)))\inQQ(1)`
`=>(a+sqrt2021)(b-sqrt2021)\inQQ`
`=>ab-2021-sqrt2011(a-b)\inQQ`
`=>sqrt2011(a-b)\inQQ`
`=>a-b=0=>a=b`
Từ `(1)` có `sqrt((a+2021)(b-sqrt(2021)))\inQQ`
`=>sqrt(a^2-2021)\inQQ`
Mà `a\inNN` nên `a^2-2021\inNN`
`=>sqrt(a^2-2021)\inNN`
`=>a^2-2021=p^2(p>=1)`
`=>` `a^2-p^2=2021`
`=>` `(a-p)(a+p)=2021`
`=>{(a-p=1),(a+p=2021):}=>a=1011=>b=1011`
Vậy `a=b=1011`