Tính giá trị biểu thức : A = $\frac{3+\sqrt[]{5} }{\sqrt[]{10} + \sqrt[]{3+\sqrt[]{5}}}$ – $\frac{3-\sqrt[]{5}}{\sqrt[]{10} – \sqrt[]{3-\sqrt[]{5}

Tính giá trị biểu thức :
A = $\frac{3+\sqrt[]{5} }{\sqrt[]{10} + \sqrt[]{3+\sqrt[]{5}}}$ – $\frac{3-\sqrt[]{5}}{\sqrt[]{10} – \sqrt[]{3-\sqrt[]{5}}}$

0 bình luận về “Tính giá trị biểu thức : A = $\frac{3+\sqrt[]{5} }{\sqrt[]{10} + \sqrt[]{3+\sqrt[]{5}}}$ – $\frac{3-\sqrt[]{5}}{\sqrt[]{10} – \sqrt[]{3-\sqrt[]{5}”

  1. Đáp án:

    $A = \dfrac{{15\sqrt {10}  – 5\sqrt 2 }}{{22}}$

    Giải thích các bước giải:

    $\begin{array}{l}
    A = \dfrac{{3 + \sqrt 5 }}{{\sqrt {10}  + \sqrt {3 + \sqrt 5 } }} – \dfrac{{3 – \sqrt 5 }}{{\sqrt {10}  – \sqrt {3 – \sqrt 5 } }}\\
     = \dfrac{{\sqrt 2 \left( {3 + \sqrt 5 } \right)}}{{2\sqrt 5  + \sqrt {6 + 2\sqrt 5 } }} – \dfrac{{\sqrt 2 \left( {3 – \sqrt 5 } \right)}}{{2\sqrt 5  – \sqrt {6 – 2\sqrt 5 } }}\\
     = \dfrac{{\sqrt 2 \left( {3 + \sqrt 5 } \right)}}{{2\sqrt 5  + \sqrt {{{\left( {\sqrt 5  + 1} \right)}^2}} }} – \dfrac{{\sqrt 2 \left( {3 – \sqrt 5 } \right)}}{{2\sqrt 5  – \sqrt {{{\left( {\sqrt 5  – 1} \right)}^2}} }}\\
     = \dfrac{{3\sqrt 2  + \sqrt {10} }}{{2\sqrt 5  + \sqrt 5  + 1}} – \dfrac{{3\sqrt 2  – \sqrt {10} }}{{2\sqrt 5  – \left( {\sqrt 5  – 1} \right)}}\\
     = \dfrac{{3\sqrt 2  + \sqrt {10} }}{{3\sqrt 5  + 1}} – \dfrac{{3\sqrt 2  – \sqrt {10} }}{{1 – \sqrt 5 }}\\
     = \dfrac{{\left( {3\sqrt 2  + \sqrt {10} } \right)\left( {3\sqrt 5  – 1} \right)}}{{\left( {3\sqrt 5  + 1} \right)\left( {3\sqrt 5  – 1} \right)}} – \dfrac{{\left( {3\sqrt 2  – \sqrt {10} } \right)\left( {1 + \sqrt 5 } \right)}}{{\left( {1 – \sqrt 5 } \right)\left( {1 + \sqrt 5 } \right)}}\\
     = \dfrac{{9\sqrt {10}  – 3\sqrt 2  + 15\sqrt 2  – \sqrt {10} }}{{{{\left( {3\sqrt 5 } \right)}^2} – {1^2}}} – \dfrac{{3\sqrt 2  + 3\sqrt {10}  – \sqrt {10}  – 5\sqrt 2 }}{{{1^2} – {{\left( {\sqrt 5 } \right)}^2}}}\\
     = \dfrac{{12\sqrt 2  + 8\sqrt {10} }}{{44}} – \dfrac{{2\sqrt {10}  – 2\sqrt 2 }}{{ – 4}}\\
     = \dfrac{{3\sqrt 2  + 2\sqrt {10} }}{{11}} + \dfrac{{\sqrt {10}  – \sqrt 2 }}{2}\\
     = \dfrac{{2\left( {3\sqrt 2  + 2\sqrt {10} } \right) + 11\left( {\sqrt {10}  – \sqrt 2 } \right)}}{{22}}\\
     = \dfrac{{6\sqrt 2  + 4\sqrt {10}  + 11\sqrt {10}  – 11\sqrt 2 }}{{22}}\\
     = \dfrac{{15\sqrt {10}  – 5\sqrt 2 }}{{22}}
    \end{array}$

    Vậy  $A = \dfrac{{15\sqrt {10}  – 5\sqrt 2 }}{{22}}$

    Bình luận
  2. Đáp án:

    \(\dfrac{{ – \sqrt {10}  + 5\sqrt 2 }}{{4 + \sqrt 5 }}\)

    Giải thích các bước giải:

    \(\begin{array}{l}
    A = \dfrac{{3 + \sqrt 5 }}{{\sqrt {10}  + \sqrt {3 + \sqrt 5 } }} – \dfrac{{3 – \sqrt 5 }}{{\sqrt {10}  – \sqrt {3 – \sqrt 5 } }}\\
     = \dfrac{{3\sqrt 2  + \sqrt {10} }}{{2\sqrt 5  + \sqrt {6 + 2\sqrt 5 } }} – \dfrac{{3\sqrt 2  – \sqrt {10} }}{{2\sqrt 5  – \sqrt {6 – 2\sqrt 5 } }}\\
     = \dfrac{{3\sqrt 2  + \sqrt {10} }}{{2\sqrt 5  + \sqrt {5 + 2\sqrt 5 .1 + 1} }} – \dfrac{{3\sqrt 2  – \sqrt {10} }}{{2\sqrt 5  – \sqrt {5 – 2\sqrt 5 .1 + 1} }}\\
     = \dfrac{{3\sqrt 2  + \sqrt {10} }}{{2\sqrt 5  + \sqrt {{{\left( {\sqrt 5  + 1} \right)}^2}} }} – \dfrac{{3\sqrt 2  – \sqrt {10} }}{{2\sqrt 5  – \sqrt {{{\left( {\sqrt 5  – 1} \right)}^2}} }}\\
     = \dfrac{{3\sqrt 2  + \sqrt {10} }}{{2\sqrt 5  + \sqrt 5  + 1}} – \dfrac{{3\sqrt 2  – \sqrt {10} }}{{2\sqrt 5  – \sqrt 5  + 1}}\\
     = \dfrac{{3\sqrt 2  + \sqrt {10} }}{{3\sqrt 5  + 1}} – \dfrac{{3\sqrt 2  – \sqrt {10} }}{{\sqrt 5  + 1}}\\
     = \dfrac{{\left( {3\sqrt 2  + \sqrt {10} } \right)\left( {\sqrt 5  + 1} \right) – \left( {3\sqrt 2  – \sqrt {10} } \right)\left( {3\sqrt 5  + 1} \right)}}{{\left( {3\sqrt 5  + 1} \right)\left( {\sqrt 5  + 1} \right)}}\\
     = \dfrac{{3\sqrt {10}  + 3\sqrt 2  + 5\sqrt 2  + \sqrt {10}  – 9\sqrt {10}  – 3\sqrt 2  + 15\sqrt 2  + \sqrt {10} }}{{15 + 3\sqrt 5  + \sqrt 5  + 1}}\\
     = \dfrac{{ – 4\sqrt {10}  + 20\sqrt 2 }}{{16 + 4\sqrt 5 }}\\
     = \dfrac{{ – \sqrt {10}  + 5\sqrt 2 }}{{4 + \sqrt 5 }}
    \end{array}\)

    Bình luận

Viết một bình luận