Trong hệ trục Oxy cho điểm A(-3;2),B(1;4),C(2;2) a) Chứng minh rằng tam giác ABC vuông tại B b) Tính diện tích tam giác ABC c) tìm tọa độ điểm D trên

Trong hệ trục Oxy cho điểm A(-3;2),B(1;4),C(2;2)
a) Chứng minh rằng tam giác ABC vuông tại B
b) Tính diện tích tam giác ABC
c) tìm tọa độ điểm D trên trục hoành sao cho DA=DC
Giúp e với ạ

0 bình luận về “Trong hệ trục Oxy cho điểm A(-3;2),B(1;4),C(2;2) a) Chứng minh rằng tam giác ABC vuông tại B b) Tính diện tích tam giác ABC c) tìm tọa độ điểm D trên”

  1. a) Véc  tơ BA=(-4;-2) –> BA=$\sqrt{(-4)^{2}+(-2)^{2}}=$ $2\sqrt{6}$ 

    Véc tơ BC=(1;-2) –> BC=$\sqrt{1^{2}+(-2)^{2}}=$ $\sqrt{5}$ 

    -> Véc tơ BA. Véc tơ BC=(-4).1+(-2).(-2)=-4+4=0.

    -> Véc tơ BA ⊥ Véc tơ BC

    -> Tam giác ABC vuông tại B

    b) $S_{ABC}=$ $\frac{BA.BC}{2}=$ $\frac{2\sqrt{6}.\sqrt{5}}{2}=\sqrt{30}$ 

    c) Gọi điểm D(x;0)

    -> Véc tơ DA=(-3-x;2) –> DA=$\sqrt{(-3-x)^{2}+2^{2}}=$ $\sqrt{x^{2}+6x+13}$ 

    -> Véc tơ DC=(2-x;2) –> DC=$\sqrt{(2-x)^{2}+2^{2}}=$ $\sqrt{x^{2}-4x+8}$ 

    DA=DC ->$\sqrt{x^{2}+6x+13}$ = $\sqrt{x^{2}-4x+8}$

    ->$x^{2}+6x+13=x^{2}-4x+8$

    -> $10x=-5$

    -> $x=-0,5$

    Vậy, D(-0,5;0)

    Bình luận

Viết một bình luận