(x-1)^x+2=(x-1)^x+6 Tìm x Các bn giúp mk vs mk đang cần gấp ạ 07/12/2021 Bởi Caroline (x-1)^x+2=(x-1)^x+6 Tìm x Các bn giúp mk vs mk đang cần gấp ạ
Đáp án: \(\left[ \begin{array}{l}x = 1\\x = 2\\x = 0\end{array} \right.\) Giải thích các bước giải: \(\begin{array}{l}{\left( {x – 1} \right)^{x + 2}} = {\left( {x – 1} \right)^{x + 6}}\\ \to {\left( {x – 1} \right)^x}.{\left( {x – 1} \right)^2} = {\left( {x – 1} \right)^x}.{\left( {x – 1} \right)^6}\\ \to {\left( {x – 1} \right)^x}.{\left( {x – 1} \right)^6} – {\left( {x – 1} \right)^x}.{\left( {x – 1} \right)^2} = 0\\ \to {\left( {x – 1} \right)^x}\left[ {{{\left( {x – 1} \right)}^6} – {{\left( {x – 1} \right)}^2}} \right] = 0\\ \to \left[ \begin{array}{l}x – 1 = 0\\{\left( {x – 1} \right)^6} – {\left( {x – 1} \right)^2} = 0\end{array} \right.\\ \to \left[ \begin{array}{l}x = 1\\{\left( {x – 1} \right)^6} = {\left( {x – 1} \right)^2}\end{array} \right.\\ \to \left[ \begin{array}{l}x = 1\\{\left( {x – 1} \right)^4} = 1\end{array} \right.\\ \to \left[ \begin{array}{l}x = 1\\x – 1 = 1\\x – 1 = – 1\end{array} \right.\\ \to \left[ \begin{array}{l}x = 1\\x = 2\\x = 0\end{array} \right.\end{array}\) Bình luận
Đáp án:
\(\left[ \begin{array}{l}
x = 1\\
x = 2\\
x = 0
\end{array} \right.\)
Giải thích các bước giải:
\(\begin{array}{l}
{\left( {x – 1} \right)^{x + 2}} = {\left( {x – 1} \right)^{x + 6}}\\
\to {\left( {x – 1} \right)^x}.{\left( {x – 1} \right)^2} = {\left( {x – 1} \right)^x}.{\left( {x – 1} \right)^6}\\
\to {\left( {x – 1} \right)^x}.{\left( {x – 1} \right)^6} – {\left( {x – 1} \right)^x}.{\left( {x – 1} \right)^2} = 0\\
\to {\left( {x – 1} \right)^x}\left[ {{{\left( {x – 1} \right)}^6} – {{\left( {x – 1} \right)}^2}} \right] = 0\\
\to \left[ \begin{array}{l}
x – 1 = 0\\
{\left( {x – 1} \right)^6} – {\left( {x – 1} \right)^2} = 0
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 1\\
{\left( {x – 1} \right)^6} = {\left( {x – 1} \right)^2}
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 1\\
{\left( {x – 1} \right)^4} = 1
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 1\\
x – 1 = 1\\
x – 1 = – 1
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 1\\
x = 2\\
x = 0
\end{array} \right.
\end{array}\)