Cho trước 6 điểm .Nếu trong 6 điểm đó không có 3 điểm thẳng hàng thì sẽ vẽ được bao nhiêu đường thẳng đi qua các cặp điểm .

Cho trước 6 điểm .Nếu trong 6 điểm đó không có 3 điểm thẳng hàng thì sẽ vẽ được bao nhiêu đường thẳng đi qua các cặp điểm .

0 bình luận về “Cho trước 6 điểm .Nếu trong 6 điểm đó không có 3 điểm thẳng hàng thì sẽ vẽ được bao nhiêu đường thẳng đi qua các cặp điểm .”

  1. Đáp án:

     $\text{15 đường thẳng}$

    Giải thích các bước giải:

     $\text{Số đường thẳng là:}$

    $\dfrac{(n-1)×n}{2}=\dfrac{(6-1)×6}{2}=15$ đường thẳng

    $\text{Vậy có 15 đường thẳng đi qua các cặp điểm}$

    Xin hay nhất

    Bình luận
  2. Gọi 6 điểm đó là $A,B,C,D,E,F$
    – Điểm A có các đoạn thẳng: $AB,AC,AD,AE,AF$
    – Điểm B có các đoạn thẳng: $BA, BC, BD, BE, BF$

    – Điểm C có các đoạn thẳng: $CA; CB; CD; CE; CF$

    Tương tự, mỗi điểm tự tạo đc 5 đoạn thẳng

    Nhưng vì có 1 đoạn thẳng trùng nhau ở 2 điểm bất kì nên:

    Số đường thẳng đc tạo thành: $6.6:2=18$ (đoạn)

     

    Bình luận

Viết một bình luận