Cho x, y, z > 0 thỏa mãn $\frac{1}{x}$ + $\frac{1}{y}$ +$\frac{1}{z}$ = 1 và x+y+z=1 Chứng minh rằng: $(x-1)(y-1)(z-1)=0$ 30/06/2021 Bởi Gabriella Cho x, y, z > 0 thỏa mãn $\frac{1}{x}$ + $\frac{1}{y}$ +$\frac{1}{z}$ = 1 và x+y+z=1 Chứng minh rằng: $(x-1)(y-1)(z-1)=0$
$\frac{1}{x}$ +$\frac{1}{y}$+$\frac{1}{z}$ =1 ⇔$\frac{yz}{xyz}$ +$\frac{zx}{xyz}$+$\frac{xy}{xyz}$=1 ⇔$\frac{xy+yz+zx}{xyz}$=1 ⇒xy+yz+zx=xyz Ta có: xyz-xyz+1-1=0 ⇔xyz-(xy+yz+zx)+(x+y+z)-1=0 ⇔xyz-xy-yz-zx+x+y+z-1=0 ⇔xyz-xy-xz+x-yz+y+z-1=0 ⇔xy(z-1)-x(z-1)-y(z-1)+(z-1)=0 ⇔(z-1)(xy-x-y+1)=0 ⇔(z-1)[x(y-1)-(y-1)]=0 ⇔(z-1)(y-1)(x-1)=0 Bình luận
$\frac{1}{x}$ +$\frac{1}{y}$+$\frac{1}{z}$ =1
⇔$\frac{yz}{xyz}$ +$\frac{zx}{xyz}$+$\frac{xy}{xyz}$=1
⇔$\frac{xy+yz+zx}{xyz}$=1
⇒xy+yz+zx=xyz
Ta có:
xyz-xyz+1-1=0
⇔xyz-(xy+yz+zx)+(x+y+z)-1=0
⇔xyz-xy-yz-zx+x+y+z-1=0
⇔xyz-xy-xz+x-yz+y+z-1=0
⇔xy(z-1)-x(z-1)-y(z-1)+(z-1)=0
⇔(z-1)(xy-x-y+1)=0
⇔(z-1)[x(y-1)-(y-1)]=0
⇔(z-1)(y-1)(x-1)=0