P=2^50+2^49+2^48+…+2^2+2+1. So sánh P& 2^51 06/12/2021 Bởi Kylie P=2^50+2^49+2^48+…+2^2+2+1. So sánh P& 2^51
Đáp án: P=2^50+2^49+2^48+…+2^2+2+1 >P= 2^51 Giải thích các bước giải: P=2^50+2^49+2^48+…+2^2+2+1 P2=2^51+2^50+2^49+…+2^3+2^2+2 P2-P=(2^51+2^50+2^49+…+2^3+2^2+2)-(2^50+2^49+2^48+…+2^2+2+1) P=2^51+2-1 P=2^51+3>P=2^51 ⇒P=2^50+2^49+2^48+…+2^2+2+1 >P= 2^51 #Nocopy Xin hay nhất Bình luận
Đáp án: $P < 2^{51}$. Giải thích các bước giải: $P = 2^{50} + 2^{49} + 2^{48} + … + 2^2 + 2^1$ $⇔ 2P = 2^{51} + 2^{50} + 2^{49} + … + 2^3 + 2^2$ $⇔ 2P – P = (2^{51} + 2^{50} + 2^{49} + … + 2^3 + 2^2)-(2^{50} + 2^{49} + 2^{48} + … + 2^2 + 2^1)$ $⇔ P = 2^{51} – 2$ $⇒$ $P = 2^{51} – 2 < 2^{51}$. Bình luận
Đáp án:
P=2^50+2^49+2^48+…+2^2+2+1 >P= 2^51
Giải thích các bước giải:
P=2^50+2^49+2^48+…+2^2+2+1
P2=2^51+2^50+2^49+…+2^3+2^2+2
P2-P=(2^51+2^50+2^49+…+2^3+2^2+2)-(2^50+2^49+2^48+…+2^2+2+1)
P=2^51+2-1
P=2^51+3>P=2^51
⇒P=2^50+2^49+2^48+…+2^2+2+1 >P= 2^51
#Nocopy
Xin hay nhất
Đáp án: $P < 2^{51}$.
Giải thích các bước giải:
$P = 2^{50} + 2^{49} + 2^{48} + … + 2^2 + 2^1$
$⇔ 2P = 2^{51} + 2^{50} + 2^{49} + … + 2^3 + 2^2$
$⇔ 2P – P = (2^{51} + 2^{50} + 2^{49} + … + 2^3 + 2^2)-(2^{50} + 2^{49} + 2^{48} + … + 2^2 + 2^1)$
$⇔ P = 2^{51} – 2$
$⇒$ $P = 2^{51} – 2 < 2^{51}$.