cho a/b = c/d . CM : a) a/a-b = c/c-d b/) a/b =a+c/b+d c)a/3a+b = c/3c+d 08/12/2021 Bởi Samantha cho a/b = c/d . CM : a) a/a-b = c/c-d b/) a/b =a+c/b+d c)a/3a+b = c/3c+d
Giải thích các bước giải: a.Ta có:$\dfrac{a}{b}=\dfrac{c}{d}$ $\to \dfrac{b}a=\dfrac{d}c$ $\to 1-\dfrac{b}a=1-\dfrac{d}c$$\to\dfrac{a-b}{a}=\dfrac{c-d}{c}$ $\to\dfrac{a}{a-b}=\dfrac{c}{c-d}$ b.Ta có: $\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}$ $\to \dfrac{a}{b}=\dfrac{a+c}{b+d}$ c.Ta có: $\dfrac{a}{b}=\dfrac{c}{d}=k$ $\to a=bk, c=dk$ $\to\begin{cases} \dfrac{a}{3a+b}=\dfrac{bk}{3bk+b}=\dfrac{k}{3k+1}\\ \dfrac{c}{3c+d}=\dfrac{dk}{3dk+d}=\dfrac{k}{3k+1}\end{cases}$ $\to \dfrac{a}{3a+b}=\dfrac{c}{3c+d}$ Bình luận
Giải thích các bước giải:
a.Ta có:
$\dfrac{a}{b}=\dfrac{c}{d}$
$\to \dfrac{b}a=\dfrac{d}c$
$\to 1-\dfrac{b}a=1-\dfrac{d}c$
$\to\dfrac{a-b}{a}=\dfrac{c-d}{c}$
$\to\dfrac{a}{a-b}=\dfrac{c}{c-d}$
b.Ta có:
$\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}$
$\to \dfrac{a}{b}=\dfrac{a+c}{b+d}$
c.Ta có:
$\dfrac{a}{b}=\dfrac{c}{d}=k$
$\to a=bk, c=dk$
$\to\begin{cases} \dfrac{a}{3a+b}=\dfrac{bk}{3bk+b}=\dfrac{k}{3k+1}\\ \dfrac{c}{3c+d}=\dfrac{dk}{3dk+d}=\dfrac{k}{3k+1}\end{cases}$
$\to \dfrac{a}{3a+b}=\dfrac{c}{3c+d}$